Inverse PCR to identify DNA sequence upstream of the pea HMG I/Y open reading frame

Druffel, K., Carson, J.A.,
Hartney, S. and Hadwiger, L.A.

Dept. of Plant Path.
Washington State Univ., Pullman, WA, USA

In the pursuit of the defense responses in pea plants, or in any induced response in eukaryotic organisms, the sequence of the open reading frame of the induced gene is attainable from a cDNA clone. Once the open reading frame transcription start site of the cDNA clone has been obtained, the promoter region is often of interest and is accessible by inverse PCR. Although inverse PCR is a standard technique, all PCR strategies do not necessarily result in success. The promoter of the pea gene HMG I/Y is of interest because of the possibility that its coded protein is influencing its own transcription. The HMG I/Y protein contains four AT-hooks $(2,5)$ that have affinity for ATrich regions of DNA (4). The extensive research relative to this property has led to the recognition that HMG-I/Y is an architectural transcription factor (7). It has recently been determined that both its RNA transcript and its protein product are depleted as the pea defense response is initiated (4).

The pea HMG I/Y protein can efficiently bind to AT-rich segments of promoters from pea PR genes, genes that are activated as the pea tissue resists fungal pathogens $(1,4)$. Therefore it was of interest to determine if such AT-rich regions were also present in the HMG I/Y's 5' region. This manuscript describes in detail the strategy used to sequence this promoter.

Methods and Results

$D N A$ extraction

One immature pea pod (3 cm length) from Pisum sativum was crushed between two sheets of weighing paper using pliers. The pod was then transferred to a 1.5 ml microfuge tube with 1 ml of extraction buffer (6) (100 mM Tris, $\mathrm{pH} 8.0,50 \mathrm{mM}$ EDTA, $500 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} 2$-mercaptoethanol). $140 \mu \mathrm{l}$ of 10% SDS was added. The tube was inverted to mix and incubated at 65 C for 10 minutes. $250 \mu \mathrm{l}$ of 8 M KOAc was added to the tube, inverted to mix, and placed on ice for 5 minutes. The tube was then centrifuged at $13,000 \mathrm{rpm}$ for 8 minutes and $600 \mu \mathrm{l}$ of the supernatant was transferred to a new tube. $300 \mu \mathrm{l}$ of isopropanol was added and the contents were mixed and held at 4 C for 10 minutes. Following 10 minutes of centrifugation at $13,000 \mathrm{rpm}$ the supernatant was discarded. 750 $\mu \mathrm{l}$ of $75 \% \mathrm{EtOH}$ was added. The tube was gently mixed then centrifuged for 3 minutes. All supernatant was removed from the tube and the pellet resuspended in 50 ul sterile $\mathrm{ddH}_{2} 0$.

Inverse PCR

Pea genomic DNA was cleaved with the TaqI 4 bp cutter (BRL products/Life Technology, Grand Island, NY) in the following $100 \mu \mathrm{l}$ reaction mix: $10 \mu \mathrm{l} \sim 500 \mathrm{ng}$ DNA, $10 \mu \mathrm{l}$ TaqI Buffer 2 (BRL), $5 \mu \mathrm{l}$ TaqI, and $75 \mu \mathrm{l}$ water. Aliquots of the mix were incubated at $65^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 60 \mathrm{~min}$, or 2 h . TaqI had the specificity to cleave the TaqI site located within the 3 ' end of HMG I/Y gene open reading frame and various sites upstream or down-stream of the gene of interest. The digested DNA was purified with a phenol/chloroform extraction and EtOH precipitation. The DNA was resuspended in 100μ l water. Ten μ of this DNA solution was ligated to itself (using T4 DNA ligase, BRL) to create a series of small circular DNAs representing the total genome, including the HMG-I/Y gene and its adjacent sequence. A primary PCR was performed as follows using the primer set indicated in Figs. 1 and 2:

Ligated TaqI/cut genomic DNA
10X PCR buffer (BRL) $\quad 2 \quad \mu \mathrm{l}$
$2.5 \mathrm{mM} \mathrm{dNTPs} \quad 1.2 \mu \mathrm{l}$
50 mM MgCl 2 $0.8 \mu \mathrm{l}$
$20 \mu \mathrm{~m}$ LeeInv367c (5' GAA CAA CCG AAT GGC CTT CT 3') $\quad 0.6 \mu \mathrm{l}$
$20 \mu \mathrm{~m}$ LeeInv580F (5^{\prime} CCA AAG GCT TCT GGA AGT GG 3') $\quad 0.6 \mu \mathrm{l}$
double distilled $\mathrm{H}_{2} \mathrm{O}$
Taq Polymerase $\quad 0.2 \mu \mathrm{l}$

Alul
AGCTTCATTGATGTATACAGATTATGAACAAAGTTTAACGGAAAATTCAAGATTAGTTGA TCGAAGTAACTACATATGTCTAATACTTGTTTCAAATTGCCTTTTAAGTTCTAATCAACT

TTTCTTAATAAGCAATTTGTGATAAAATGAATTGAAAAATAAAACGAGTATAACTAATCA AAAGAATTATTCGTTAAACACTATTTTACTTAACTTTTTATTTTGCTCATATTGATTAGT $\begin{array}{llllll}70 & 80 & 90 & 100 & 110 & 120\end{array}$

TGTATGCATGTGGATATATTAGTAGCAACCTAACCCTAACATCTCTTTATCATCTAACAT ACATACGTACACCTATATAATCATCGTTGGATTGGGATTGTAGAGAAATAGTAGATTGTA $\begin{array}{llllll}130 & 140 & 150 & 160 & 170 & 180\end{array}$

CTTTGTTATTCTCTTATTTTAATTTGTTATTGTTTTAATTTCTCAAACAAAACATCTTTC GAAACAATAAGAGAATAAAATTAAACAATAACAAAATTAAAGAGTTTGTTTTGTAGAAAG $\begin{array}{llllll}190 & 200 & 210 & 220 & 230 & 240\end{array}$

AAAACAAATCCTAAATTGCTTAAAATAGTAACAATTACTTCAACAATAAAAAAACTTTTA TTTTGTTTAGGATTTAACGAATTTTATCATTGTTAATGAAGTTGTTATTTTTTTGAAAAT $\begin{array}{llllll}250 & 260 & 270 & 280 & 300\end{array}$

TTTCAATCATATTTTGTACATGCATCTCATTACATCTTGAAATTCCACTTATTTTCTGTA AAAGTTAGTATAAAACATGTACGTAGAGTAATGTAGAACTTTAAGGTGAATAAAAGACAT $\begin{array}{llllll}310 & 320 & 330 & 340 & 350 & 360\end{array}$

CATGCATCTCATTACATTTTGAAATTCCACTTATTTTCTGGACATGGATCTCATTACATT GTACGTAGAGTAATGTAAAACTTTAAGGTGAATAAAAGACCTGTACCTAGAGTAATGTAA $\begin{array}{lllll}370 & 380 & 390 & 400 & 410\end{array}$

TTGAAATTCCACTTATTTTCCGACAATTATTTTAAATTACTTAAAATAGTAACAATTACT AACTTTAAGGTGAATAAAAGGCTGTTAATAAAATTTAATGAATTTTATCATTGTTAATGA $\begin{array}{llllll}430 & 440 & 450 & 460 & 470\end{array}$

CCAACAATTTTTTTTAATTCTATCATATTTTATACATACATTTTATTACATCTTGAAATT GGTTGTTAAAAAAAATTAAGATAGTATAAAATATGTATGTAAAATAATGTAGAACTTTAA $\begin{array}{llllll}490 & 500 & 510 & 520 & 530 & 540\end{array}$

TCACTTATTCTCTAACAATTATCTTAAATTACTTAAAATAGTAATAATTATCTATAAATT AGTGAATAAGAGATTGTTAATAGAATTTAATGAATTTTATCATTATTAATAGATATTTAA $\begin{array}{lllll}550 & 560 & 570 & 580 & 590\end{array}$

GTATCGTAAGATGATAAAAACATACTAACGAATTGTAGTAGTTTATAACTTAATATTTTT CATAGCATTCTACTATTTTTGTATGATTGCTTAACATCATCAAATATTGAATTATAAAAA $\begin{array}{lllll}610 & 620 & 630 & 640 & 650\end{array}$ Taq1
TCTTTCGATTTTACTTTTATTATCTTAATTCAAAAAATTATATATTATTTAAATATATTT AGAAAGCTAAAATGAAAATAATAGAATTAAGTTTTTTAATATATAATAAATTTATATAAA $\begin{array}{lllll}670 & 680 & 690 & 700 & 710\end{array}$

TTAAGTCATTTTATAATTATAAGTCATTTCATTTTATTCAACATTACAAATTTAATCAAT AATTCAGTAAAATATTAATATTCAGTAAAGTAAAATAAGTTGTAATGTTTAAATTAGTTA $\begin{array}{lllll}730 & 740 & 750 & 760 & 780\end{array}$

TAATTTATTTTCAACCACCCATTACCAACTTATAAATTAAAAATAAATAAATTCATCAAC ATTAAATAAAAGTTGGTGGGTAATGGTTGAATATTTAATTTTTATTTATTTAAGTAGTTG $\begin{array}{lllll}790 & 800 & 810 & 820 & 830\end{array}$

TATAAATTAATTTATCAATTATCCGTTATTTCTTTTAACAACAATGTCTATATACATATC ATATTTAATTAAATAGTTAATAGGCAATAAAGAAAATTGTTGTTACAGATATATGTATAG $\begin{array}{llllll}850 & 860 & 870 & 880 & 890 & 900\end{array}$

GTATTAAAAATGATGATATAATTTCCACTTTTGATTTTTTAAAATCAAATTATGCAAAAA CATAATTTTTACTACTATATTAAAGGTGAAAACTAAAAAATTTTAGTTTAATACGTTTTT $\begin{array}{lllll}910 & 920 & 930 & 940 & 950\end{array}$

TATTTAAGAGGTCGGTGCGTCCCGACACTTAATATTTAGTATGAAAATTGTAATTATCGA ATAAATTCTCCAGCCACGCAGGGCTGTGAATTATAAATCATACTTTTAACATTAATAGCT 970 980 990 1000 1010 AAATATACAAACCGAGTCAAACCGTTTCTTATTTTAGCAATAAAATTCACAGATACATTT TTTATATGTTTGGCTCAGTTTGGCAAAGAATAAAATCGTTATTTTAAGTGTCTATGTAAA $\begin{array}{llllll}1030 & 1040 & 1050 & 1060 & 1070 & 1080\end{array}$

The PCR temperature recycling program was: 94 C for $30 \mathrm{sec}, 65 \mathrm{C}$ for $20 \mathrm{sec}, 72 \mathrm{C} 1.5$ min for 50 cycles. The product was then diluted $1: 10$ in preparation for secondary PCR.

A secondary PCR utilized the primer combination INV615F (5^{\prime} GCC GAA GAA GAT TGC TAG GAC 3 ')/INV248c (5 ' TCA TTC AGT GAA TCA ATA GCC 3^{\prime}) as indicated in Fig. 1 with an annealing temperature of 61 C . This yielded an $\sim 780 \mathrm{bp}$ segment, which was cloned into a Topo PCR2.1 vector (Promega) and subsequently sequenced. The two new sequences generated from the clone were recognized as being within the region 5' of the HMG I/Y start site. The length of this sequence (780 bp) was insufficient for the complete analysis of a HMG I/Y 5' region but contained an AluI site. Thus the pea DNA was cut with $A l u \mathrm{I}$ and the DNA was again circularized by ligation to obtain additional upstream sequence. Two new sets of primers were designed. Inv339F (5^{\prime} ATC CTC ATC CAA AAG AAG $3{ }^{\prime}$)/ Inv292 (5' AAT TAA GGC TTT TTT GAC 3') was used for the primary PCR reaction. PCR was run under the following conditions; 94 C for 30 sec, 51 C for $20 \mathrm{sec}, 72 \mathrm{C}$ for 1 min . Secondary PCR using Inv187c (5' TAA TTG AAA AGG GTA TGC 3')/Inc609f (5' TCA ATC CTT AGT TCA TCC 3^{\prime}) was then performed (94 C for 30 sec, 51 C for $20 \mathrm{sec}, 72 \mathrm{C}$ for 1 min for 50 cycles). The subsequent PCR product was cloned and sequenced as before and increased the total sequence upstream of the HMG-I/Y gene to l748bp (Fig. 1).

To verify the sequence 1748 bp upstream of the HMG-I/Y gene, a primer set $13 \mathrm{f}\left(5^{\prime}\right.$ ACA GAT TAT GAA CAA AGT TTA ACG $\left.3^{`}\right) / 754$ (5' TCA CTT GTG TCA ACT GAG GC 3^{\prime}) was used to amplify an approximate 2500 bp segment off of uncut genomic DNA. PCR conditions were $94 \mathrm{C} 30 \mathrm{sec}, 61 \mathrm{C} 20 \mathrm{sec}, 72 \mathrm{C}$ 2:4 min for 50 cycles. The PCR product was cloned and completely sequenced to confirm that the inverse sequence reactions were assembled correctly.

ATCATTTTATTTTCCTATTGAATAAAATACAATGTTTTTTCATTTATTTAATCTTTAAAT				
TAGTAAAATAAAAGGATAACTTATTTTATGTTACAAAAAAGTAAATAAATTAGAAATTTA				
1090	1100	1110	1120	1130
				Inv187c

AATTTTTCTTGTTTATTTTATCACATTTTGATAACTATGAATTTGAAAAGCATACCCTTT TTAAAAAGAACAAATAAAATAGTGTAAAACTATTGATACTTAAACTTTTCGTATGGGAAA 1200

TCAATTAAAAAATCAATTTATTTATTTCATTTCATAAATAATATTCATAAAATTAAATAC AGTTAATTTTTTAGTTAAATAAATAAAGTAAAGTATTTATTATAAGTATTTTAATTTATG $\begin{array}{llllll}1210 & 1220 & 1230 & 1240 & 1250 & 1260\end{array}$

AATGAGTAGAATTTCAAACTCTCAATAAATTTTAGTCAAAAAAGCCTTAATTTAAAAATA TTACTCATCTTAAAGTTTGAGAGTTATTTAAAATCAGTTTTTTCGGAATTAAATTTTTAT $12701280 \quad 1290 \quad 1300 \begin{array}{ll}1310 & \\ & \\ \text { Inv339f } & \end{array}$
AATAAAAATATTTAAAATTGAGATAGTCTACATCACAAATCCTCATCCAAAAGAACAAAG TTATTTTTATAAATTTTAACTCTATCAGATGTAGTGTTTAGGAGTAGGTTTTCTTGTTTC $\begin{array}{llllll}1330 & 1340 & 1350 & 1360 & 1370 & 1380\end{array}$

AATACAAAAAACAGTAGGTACCTCCAAATATTTCTGTGAACTAACACATTTTTGCCATGT TTATGTTTTTTGTCATCCATGGAGGTTTATAAAGACACTTGATTGTGTAAAAACGGTACA 13901400141014201430140

CATCAATCCATGTGAGATTCTCCATATTATAATATCAACCCTTGGATCATCATCATTCTA GTAGTTAGGTACACTCTAAGAGGTATAATATTATAGTTGGGAACCTAGTAGTAGTAAGAT $14501460147014801490 \quad 1500$

TTGATTCCTAGCCGTCCATTGTCTTGTTCAGACAAACACAAGATATATCTTGGGAAAAAG AACTAAGGATCGGCAGGTAACAGAACAAGTCTGTTTGTGTTCTATATAGAACCCTTTTTC $\begin{array}{llllll}1510 & 1520 & 1530 & 1540 & 1550 & 1560\end{array}$

AAGAGCAAACTTTTTTTAATATATTTAATTTCTTTCCAATCTTTTAATACATTTATCTCC TTCTCGTTTGAAAAAAATTATATAAATTAAAGAAAGGTTAGAAAATTATGTAAATAGAGG $15701580159016001610 \quad 1620$ Inv609F
CTTTAAATTCAATCCTTAGTTCATCCATCAATTCACTCACAATCTCATTTCTCATAACAA GAAATTTAAGTTAGGAATCAAGTAGGTAGTTAAGTGAGTGTTAGAGTAAAGAGTATTGTT $\begin{array}{llllll}1630 & 1640 & 1650 & 1660 & 1670 & 1680\end{array}$

AATTTCTATCTCCCTCAGATTTTTTATCTCAATTTTAAAGCTTTTTTCCTCACTCTTTCG TTAAAGATAGAGGGAGTCTAAAAAATAGAGTTAAAATTTCGAAAAAAGGAGTGAGAAAGC
$1690 \quad 1700 \quad 1710$ Alu1 1730 1740
 GTCGAAGTTACCGTTGTTCTCTCCAATTATTCGGAGACAGTGAAGGAGGAATGGGACTCC $\begin{array}{llllll}1750 & 1760 & 1770 & 1780 & 1800\end{array}$

TAAACACAAACCCCAATTTTTACTTTTCTCATGGATATTTATTCTGTACTATTTTCTTAG ATTTGTGTTTGGGGTTAAAAATGAAAAGAGTACCTATAAATAAGACATGATAAAAGAATC $\begin{array}{llllll}1810 & 1820 & 1830 & 1840 & 1850 & 1860\end{array}$

TAAAGTTGAAATTTTTTCACTGATCTGTTTGATCTCAAAATTTTCACTTACTTAGTTTTT ATTTCAACTTTAAAAAAGTGACTAGACAAACTAGAGTTTTAAAAGTGAATGAATCAAAAA 187018801890190019101920

TTTTTCTCATCAAGTTTTGTTTGTTTTGGGTTTTTGTGTTTGTTTTGGGTTTTTGTTATT AAAAAGAGTAGTTCAAAACAAACAAAACCCAAAAACACAAACAAAACCCAAAAACAATAA $\begin{array}{llllll}1930 & 1940 & 1950 & 1960 & 1970 & 1980\end{array}$

TTGATGGAAAAGATTGATTATGTGTTTTGTTGCATGTTTTTGTTGTAGTTGATACTGAAG AACTACCTTTTCTAACTAATACACAAAACAACGTACAAAAACAACATCAACTATGACTTC 19902000202020302040 Inv248c
GCTATTGATTCACTGAATGAACCAAATGGATCAAACAAATCAGCAATATCAAACTACATA CGATAACTAAGTGACTTACTTGGTTTACCTAGTTTGTTTAGTCGTTATAGTTTGATGTAT 2050206020802090200 GAATCAGTTTACGGTGAACTACCAGAAGGCCATTCGGTTGTTCTTTTATATCATCTGAAC CTTAGTCAAATGCCACTTGATGGTCTTCCGGTAAGCCAACAAGAAAATATAGTAGACTTG $\begin{array}{lllll}2110 & 2120 & 2130 & 2150 & 2160\end{array}$

Discussion

The availability of this sequence enables the identification of potential promoter elements 5 ' of the HMG-I/Y opening reading frame and assists the development of nested series of promoter/reporter elements to evaluate those sequences vital for activation (1). Once these regulatory elements have been found it is possible to identify and characterize the sequences involved in HMG-I/Y
transcription. Stretches of alternating A and T sequences are known to bind the AT hooks of the HMG-I/Y protein (7). There are fifteen 4 bp stretches, three 5 bp stretches, four 6 bp stretches and one 7 bp stretch of alternating A and T found in the region 5' of the pea HMGI/Y gene open reading frame. The availability of pure HMG-I/Y protein and the 5 ' sequence information enables gel mobility assays. These assays can determine if any of the regions 5' of HMG-I/Y associate with this architectural transcription factor that is its own coded gene product. Many other predicted transcription factor binding sites can be derived from the 5^{\prime} sequence. For example, the MYB attachment site, AACCG, is found twice in the pea 5^{\prime} region and once in the Arabidopsis promoter region (3).

Acknowledgment: The GenBank Accession number for the pea HMG-I/Y sequence reported in this manuscript is AY864056. We thank the Washington Sea Grant program for support. Ag. Research Center ms. no.0399.

1. Choi, J.J., Klosterman, S.J. and Hadwiger, L.A. 2004. Phytopath. 94: 651-660.
CAGATGAAAGAGAGTGGGGACCTTGTTTTTGCAAAGAACAACTACTTGAGGCCTGATCCA

GTCTACTTTCTCTCACCCTGGAACAAAACGTTTCTTGTTGATGAACTCCGGACTAGGT				
2170	2180	2190	2200	2210

AATGCTCCACCGAAGAGAGGGCGCGGTAGGCCTCCTAAGGCGAAGGATCCGTTGGCCTCA TTACGAGGTGGCTTCTCTCCCGCGCCATCCGGAGGATTCCGCTTCCTAGGCAACCGGAGT 2230225022602220

CCGCCTTCAGGTGCTGTGTCCACACCGAGGCCAAGGGGTCGTCCGCCTAAGGATCCTAAT GGCGGAAGTCCACGACACAGGTGTGGCTCCGGTTCCCCAGCAGGCGGATTCCTAGGATTA

2290 \begin{tabular}{ccc}
2300

Inv580F

 $2310 \quad 2320 \quad 2330$

2340

\end{tabular}

GCGCCACCGAAGACTCCAAAGGCTTCTGGAAGTGGTAGGCCAAGGGGTAGGCCGAAGAAG CGCGGTGGCTTCTGAGGTTTCCGAAGACCTTCACCATCCGGTTCCCCATCCGGCTTCTTC $2350 \quad 2360 \quad 2380 \quad 2390 \quad 2400$

ATTGCTAGGACCGAGGATGTTGATGCTTCAACTCCTAGTCCTGTGAGTGTTGCTGCTGTT TAACGATCCTGGCTCCTACAACTACGAAGTTGAGGATCAGGACACTCACAACGACGACAA 24102420243024502460 Taq1
AATGTTGATGTTGTTGTTCCATGTGTTGCTGCTGTTCCTACTTCGAGTGGGAGACCAAGG TTACAACTACAACAACAAGGTACACAACGACGACAAGGATGAAGCTCACCCTCTGGTTCC

$$
\begin{array}{llllll}
2470 & 2480 & 2490 & 2500 & 2510 & 2520
\end{array}
$$

GGTAGGCCTCCTAAGGTGAAGCCTCAGTTGACACAAGTGA
CCATCCGGAGGATTCCACTTCGGAGTCAACTGTGTTCACT HMG754
Fig. 1: DNA frame of the pea gene HMG-I/Y. The restriction enzyme sequences and the primers utilized in developing the 5' sequence are underlined and labeled.

5' region, undetermined	Taq1	HMG-I/Y ORF	Taq1	3' region
	248c, 367c			
Cleave with Taq1:	Taq1	580F, 615 F F ${ }^{\text {Taq1 }}$		
Ligate cut ends, PCR amplify, clone and DNA sequence:				
Alu1	Alu1		I	Pea DNA
Cleave with Alu1 and ligate cut ends:				
187c, 292c				
Alu1				
PCR amplify clone and DNA sequence				

Fig. 2 Cartoon of the sequence of restriction digestion, primer development and DNA sequencing analyses of the pea HMG-I/Y 5' region (See Methods).

