Microsatellite and ITS sequence variation in wild species and cultivars of pea

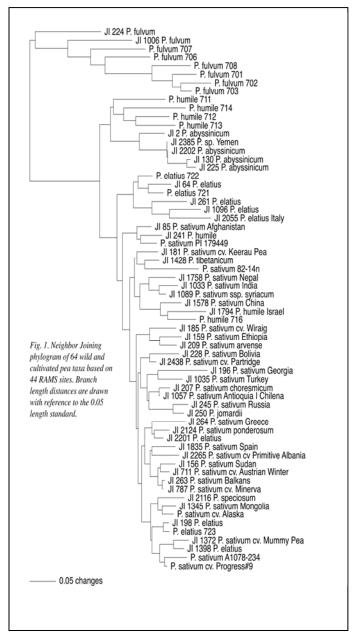
Polans, N.O. USA Moreno, R.R. Northern Illinois University, Dekalb, Illinois,

Previous investigations by our laboratory (1, 2) have applied the nucleotide sequence variation found in ribosomal internal transcribed spacer (ITS) regions to the systematic analysis of closely related pea taxa, in part due to the high rate of evolutionary change characterizing these DNA regions (3). No attempt was made to infer evolutionary relationships among the 65 taxa, however, given the relatively few informative sites available to the analysis. Despite a paucity of data, several observations could be made respecting the overall level of genetic variation found across the genus and the topological relationships established among the selected groups of taxa. These include: 1) very close genetic affinities throughout *Pisum*, with *P. fulvum* exhibiting the greatest degree of genetic divergence based upon the data examined; 2) support for *P. fulvum*, northern *P. humile* and southern *P. humile* as distinct taxonomic categories; 3) the independent evolution of a pea chromosomal translocation; 4) the assignment of JI1794 as a "northern" *P. humile*; and 5) inconsistent taxonomic assignments for JI241, JI198, JI1398, JI1096 and JI2055. The data were unable to resolve the very close systematic relationships among *P. elatius*, *P. abyssinicum* and *P. sativum*.

More recently, our laboratory has developed and/or characterized a series of pea microsatellite loci (4, 5) to serve as informative neutral molecular markers for a number of project applications. In previous studies involving pea, microsatellite-based molecular markers have been used to determine intergenera transferability of primers (6), to analyze diversity within the genus *Pisum* (7) and to estimate the level of microsatellite polymorphism in *Pisum sativum* L. (8). RAMS (Randomly Amplified MicroSatellites), a novel molecular marker technique (7), applies lower PCR annealing temperatures to microsatellite-specific primers and provides an efficient means to generate greater numbers of less-specific multi-banded DNA profiles.

Unfortunately, in the case of a *P. sativum* ssp. Syriacum accession from the original collection, too few reliable RAMS bands were obtained to include it in the current data set. The goal of the present study, therefore, is to compare and combine RAMS microsatellite variation with nuclear ribosomal DNA variation as a systematic organizing tool for 64 wild and cultivated pea taxa, both to re-examine our previous findings and to explore the results of combining both data sets in a common analysis.

Materials and Methods

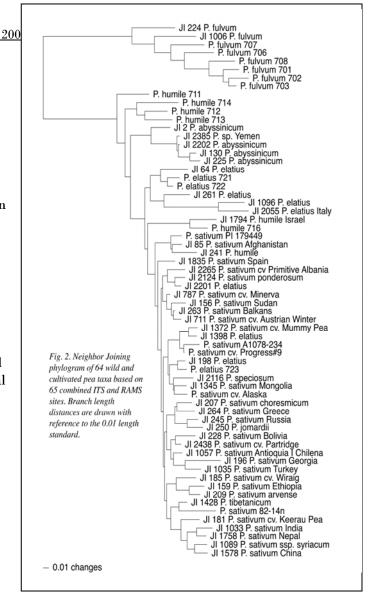

Pisum isolates 701-723 are from the Ben Ze'ev and Zohary (1973) collection (courtesy of J.G. Waines), JI accessions are from the John Innes collection (courtesy of M.J. Ambrose), cv. Alaska is from J. Mollema and Son, Inc. (Grand Rapids, MI), cv. (Morse's) Progress #9 is from Ferry-Morse Seeds (Mountain View, CA) and accessions 82-14n, A1078-234 and PI 179449 were kindly provided to this project by G. Marx and N. Weeden.

DNAs from 64 pea accessions representing the range of the genus *Pisum* are amplified with 11 of the 31 primer sets described previously (4, 5) and then separated on polyacrylamide gels to evaluate detectable differences using the RAMS method (see 4). Clearly discernable polymorphic and monomorphic bands between 90-300 bp in size are scored as "present", "absent" or "missing data" for each accession. Sequence data are analyzed using the PAUP computer package (9).

Results and Discussion

Seventy-eight scoreable DNA bands are produced among the 64 representative pea accessions using primer sets 3, 5, 14, 16, 17, 18, 20, 22, 23, 25 and 31 (see 4, 5 and Table 1), resulting in 4992 total data points. Of the 78 RAMS bands generated, 46 are polymorphic and 44 are informative across all of the accessions. A compilation of the 44 informative bands is delineated for all 64 pea taxa in Table 1. As noted previously (1), the table is organized in accordance with the two commonly recognized species of pea (10, 11, 12), the more divergent P. fulvum (also see 13) and the typically cultivated *P. sativum*. The former is represented by eight different accessions, while the latter is further differentiated in the table as four subspecies: humile, elatius, abyssinicum and sativum. Subspecies *humile* is subdivided by northern and southern populations (10). There are six accessions characterized as questionable taxonomic assignments solely based on the RAMS data, as contrasted with five inconsistent assignments (three shared in common) based on the nuclear ribosomal DNA variation reported previously (1).

A Neighbor Joining (NJ) distance analysis of the 44 RAMS data points is presented as a phylogram in Figure 1 to provide a basic illustration of the information presented in Table 1. In the figure, *P. fulvum*, northern and southern *P. humile*, *P. abyssinicum* and a half-dozen *P. elatius* accessions maintain distinct group associations; although, the *P. abyssinicum* group includes JI2385, formerly



designated as *P. sativum* (1). Two *P. elatius* accessions (JI 1096 and JI 2055) that displayed the largest number of ITS sequence differences with *P. fulvum* in the ribosomal DNA study now group as part of the six *P. elatius* accessions. Four other *P. elatius*, a single putative *P. humile* and the paired northern *P. humile* all intersperse with *P. sativum* in the figure. A second NJ phylogram (Figure 2) combines the 44 RAMS data points with the 21 informative ITS data points from the earlier study (1). The relationships within and among *P. fulvum*, southern *P. humile*, *P. abyssinicum* and the six *P. elatius* remain essentially the same as depicted in Figure 1, and the four other *P. elatius* and one *P. humile* remain dispersed within an otherwise single block of *P. sativum*. With the combination of data sets, however, the pair of northern *P. humile* accessions is associated more closely with the *P. elatius* group and is not interspersed with *P. sativum*.

Both the microsatellite and combined data sets presented in Figures 1 and 2, respectively, support the designation of *P. fulvum* as a distinct taxon; although, the relatively small number of available data points renders any conclusions from this study tentative. Additional support for *P. fulvum* as a distinct species, however, is presented elsewhere (1, 10, 11, 12, 13). With respect to the remaining taxa, southern *P. humile* is least closely associated with *P. sativum* and remains separated from northern *P. humile*. The *P. abyssinicum* group is most closely associated with southern *P. humile* and

portions of a dispersed *P. elatius* group. These relationships are not inconsistent with the proposed placement of *P. abyssinicum* between *P. elatius* and *P. sativum* (14) given the dispersed nature of the *P. elatius* subspecies. Northern *P. humile* has been postulated the closest wild progenitor of the cultivated pea based in part on a shared chromosomal translocation (10) and detailed chloroplast studies (15). The current study lends limited support to this assertion, which was not supported by the ITS data alone (1).

Acknowledgement: This work was supported by funds from the Department of Biological Sciences, Northern Illinois University.

- 1. Polans, N.O. and Saar, D.E. 2002. *Pisum* Genetics 34:9-14.
- 2. Saar, D.E. and Polans, N.O. 2000. Pisum Genetics 32:42-45.
- 3. Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S. and Donoghue, M.J. 1995. Annals Missouri Bot. Gard. 82:247-277.
- 4. Moreno, R.R. and Polans, N.O. 2006. Pisum Genetics 38:10-14.
- 5. Moreno, R.R. and Polans, N.O. 2007. Pisum Genetics 39:10-12.
- 6. Pandian, A., Ford, R. and Taylor, P.W.J. 2000. Plant Mol Bio. Rep. 18:395a-395h.
- 7. Ford, R., Le Roux, K., Itman, C., Brouwer J.B. and Taylor, P.W.J. 2002. Euphytica 124: 397-405.
- 8. Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G. and Baranger, A. 2001. Plant Breeding 120: 311-317.
- 9. Swofford, D.L. 1998. PAUP, Version 4.0b4a. Sinauer Associates, Sunderland, Massachusetts.
- 10. Ben Ze'ev, N. and Zohary, D. 1973. Israel J. Bot. 22:73-91.
- 11. Hoey, B.K., Crowe, K.R., Jones, V.M. and Polans, N.O. 1996. Theor. Appl. Genet. 92:92-100.
- 12. Marx, G.A. 1977. In: Physiology of the Garden Pea. Eds. Sutcliffe, J.F. and Pate, J.S., Academic Press, New York, pp. 21-43.
- 13. Jing, R., Johnson, R., Seres, A., Kiss, G., Ambrose, M.J., Ellis, T.H.N. and Flavell, A.J. 2007. Genetics 177:2263-2275.
- 14. Weeden, N.F. and Wolko, B. 2001. Pisum Genetics 33:21-25.
- 15. Palmer, J.D., Jorgensen, R.A. and Thompson, W.F. 1985. Genetics 109:195-213.

Table 1. Variable RAMS sites for wild and cultivated taxa of pea.

RAMS BANDS*

111111111111111111222222222233333 33335555544666678888888888880022223333511111 ABCDABCDEBEABCDBBCDFGHIJKLMNAEACDFBDIJAABDEF

Pisum fulvum

Pisum fi	ılvum	
701	11001?110100?11010000011000000001100011011	JI185 Wiraig ????1110101110111001001001101010110101
702	110?1101000001101000001100000000011000?10101	JI196 Georgia 00101110101110100101100111100011111000101
703	10011?110000111?1000001100000000110000101??	JI207 choresmicum 0110111010111011110100100111110111111100101
706	????11?1?00111111000111110000000001????01110?	JI209 arvense 011010101011101?1001011001111001110111111
707	11001111000011101110011100010001110??0011101	JI228 Bolivia 001011101011100110010010011110001111111
708	1?001111000011101010001100100000000?0010100	JI245 Russia 011011101011101111?101101111110111?11100100
JI224	11101111?011010?1000001100100001110110011111	JI250 (P. jomardii) 01001110101110111101011011110?011111100100
JI1006	10101??10001101?1010001100110000001101011100	JI263 Balkans 011?11101011101111010010111110011111111
		JI264 Greece 001011101011101011010010111111011111111
Pisum sativum		JI711 Austrian Winter 01101110101110111101001011111001110111
ssp. humile (northern)		JI787 Minerva 011011101011101010101011111000101111111
716	000?0?10101110?111010010011100111100111110??	JI1033 India 001?1110111110111100001011110000110111010?0
JI1794	0000011011111011111011000110011110111111	JI1035 Turkey 0010111010111011110100100111010?1111110010?0
		JI1057 Antioquia I Chilena 011011101011101111010010011111001111111
ssp. humile (southern)		JI1089 Syriacum 00101110101110111101001001110000110111011010
711	010111101011101?110000110111000001101101	JI1345 Mongolia 0110111010111011110011110011110011101111
712	01011110101100011100001011100101111?11111010	JI1372 Mummy Pea 010011101111101111001111001111100111111
713	010111101010000111010000011101011110110	JI1428(P. tibetanicum) 000011101111101?110100100111100?11?111001011
714	01011100111010111000010011110?0111101101	JI1578 China 0000??10111110111101011001110000110111?11010
		JI1758 Nepal 001011101111101111010010111111010111111
ssp. elatius		JI1835 Spain 0100111010111011?1010010011110111111111
721	010?1110101110111011010001110001111?11111010	JI2116(P. speciosum) 01101010101110111101011001111011111111
722	010?11101011101110110110111100011111111	JI2124 ponderosum 001011101011101111010110111110001111111
JI64	010011101011101110110000011110010111111	JI2265 Primitive Albanian 00101110101110111?110010111110111111?1111011
JI261	0001111010111011101?010011110001111100110??	JI2438 Partridge 001011101011101111?10010011110011111110110
JI1096	00011?1011111011001101?0011100111101110	
JI2055	00111110111110111011010011110010010?110110	Inconsistent assignments:
		JI241 (1) 01?0111010111011001011110010111111101101
ssp. abys	sinicum	723 (2) 00101110101110111001110011110011111111
JI2	01001110101110011?001010011111001011110110	JI198 (2) 0110111010111011110101100111110111101
JI130	01011110101110111? 00100001100100101111011000	JI1398 (2) 01?01110111110101101?110011110?1111110110
JI225	0101111010111001100010?0011001001011110110	JI2201 (2) 0010111010111010101011110001111111111
JI2202	01011110101110111?001010011001011011110110	JI2385(P. sp. Yemen) (3) 01011110101110111?0010100101001011011110110
ssp. sativ	um	
82-14n	010?1110111110?01101001011110011110111?01111	*1 0-1 . 0- : : 1.
A1078-23	4 00101110111110011101011001111001110111	*1=present, 0=absent, ?=missing data.
PI179449	01101110101110?11001001011110011110111111	(1) II941 : listed of one housile boot it displayer on Setimory characteristics
Alaska	0110111010111011111101100111100111?1111010111	(1) JI241 is listed as ssp. humile, but it displays ssp. Sativum characteristics.
Progress [‡]	<i>4</i> 9 0?10111011110111?0101100111100111111111	(2) 723, JI198, JI1398 and JI2201 are listed as ssp. elatius, but they display ssp. sativum
JI85 Afghanistan 01001110101110111101001011110011111111		characteristics. (3) JI2385 is listed as ssp. sativum, but it displays ssp. Abyssinicum characteristics.
JI156 Su		(3) J12000 is listed as ssp. sativum, but it displays ssp. Adyssinicum characteristics.
JI159 Et	thiopia 00101010101110?1100101100111000011?111111	