Branching in pea: double mutants of $r m s 7$ with rmsl through rms 5

Murfet, I.C.
Plant Sci, Univ. of Tasmania, Hobart
Tasmania, Australia
Mutants $r m s 6$ and $r m s 7$ in pea have increased branching from basal nodes $(6,10)$. In contrast, mutants $r m s l$ through rms5 have increased branching from both basal and aerial (upper stem) nodes (1-3). A start has been made on checking double-mutant phenotypes. In some cases, the double mutant expresses an additive phenotype with branching more strongly enhanced than in either single mutant, e.g. rms2-1 rms4-1, rms2-1 rms5-2, rms3-1 rms6-2 and rms6-1 rms7-1 (6, 8-10). In other cases, epistasis occurs and the double-mutant phenotype does not transgress beyond the range of the single mutants, e.g. rms $1-1$ rms4-1 and rms2-1 rms3-1 (8).

In the present study, the phenotype of the double mutants of $r m s 7$ with $r m s l$ through $r m s 5$ was examined in tall (Le) plants grown in the glasshouse under an 18 -h photoperiod (for details see 8). This strategy was designed to allow identification of double-mutant plants regardless of whether they were clearly obvious from an additive double-mutant phenotype or hidden by epistasis of one or other mutant allele. The strategy makes use of the following information gleaned from years of observation of branching in pea. 1) Basal branching is expressed more strongly in dwarf (le) than tall (Le) plants (4, 7, 8). 2) In contrast to dwarf plants, tall plants with WT (wild-type) branching genes invariably fail to produce secondary stems from a basal node under the 18-h conditions used. 3) Tall rmsl through rms5 plants always produce aerial laterals under these 18-h conditions. Thus in an F_{2} population, any tall plant with a major secondary stem and no aerial laterals could be considered as homozygous for $r m s 7$. In cases where double-mutant plants were not exposed in F_{2} by an additive phenotype, F_{3} progenies could be grown from the homozygous rms 7 plants and any F_{3} plants expressing strong growth of aerial branches would be exposed as double mutants.

In accordance with this strategy, dwarf line M3T-475 (rms7 1) was crossed with tall lines Wtl5240 (rmsl-5, ex Kaliski), K524 (rms2A, ex Torsdag), K487 (rms3-1 ex Torsdag), K164 (rms41, ex Torsdag) and HL298 (rms53). HL298 was specifically bred for this purpose from a cross between tall cv. Torsdag and Wtl5241 (rms5-3, ex dwarf cv. Paloma). Further details on these mutant lines are given by Arumingtyas et al. (2).

The rmsl-5 rms7-1 double mutant was found to have an additive phenotype (Fig. 1). Tall F_{2} plants of cross Wt15240 (rmsl-5) x M3T-475 (rms7-1) could be partitioned into four branching classes corresponding to WT, rms7, rmsl, and rmsl rms7 double-

Fig. 1. Distribution of the branching index 'ratio of lateral to main-stem length' for cv. Terese, M3T-475 (rms7-1), cv. Kaliski, Wtl5240 (rms15), and tall F_{2} plants from the cross Wtl5240 x M3T-475. The F_{2} data are subdivided into four branching phenotypes representing WT, rms7, rms1, and double-mutant rmsl rms7 plants. Data are from mature plants; photoperiod 18 h.
mutant plants. There was a quantum increase in the ratio of lateral to main-stem length from WT to rms 7 to $r m s l$ to $r m s 1 r m s 7$. The observed F_{2} numbers of 27 WT , eight $r m s 7$, eight $r m s l$ and two $r m s 1 r m s 7$ plants are in good accordance with a di-hybrid 9:3:3:1 ratio ($\mathrm{P}>0.9$). The additive phenotype of the double mutant was confirmed by growing F_{3} progenies from rms $7 \mathrm{~F}_{2}$ plants (data not shown). The tall rmsl-5 rms $7-1$ segregates in the F_{3} population had a branching index 42% higher than the WT15240 rmsl-5 single-mutant controls grown with this generation.

Over half the tall WT F 2 plants of cross WT15240 x M3T-475 produced some lateral branches in contrast to the complete absence of branching in the tall WT control Kaliski (Fig.l). The WT F_{2} plant with the rather high branching index of 0.8 was confirmed to be WT by growing F_{3}. The branching in these WT plants was comprised principally of short, late emerging, aerial laterals; no WT plant produced a secondary stem from a basal node. The late outgrowth of aerial laterals on many of the tall WT F_{2} plants may partially be explained by the fact that Terese and M3T-475 tended to flower at node 18 while Kaliski and Wt 15240 generally flowered at node 16. A two-node delay in flower initiation allowed increased opportunity for aerial lateral outgrowth. (NB. The late emerging aerial laterals referred to here are a normal part of the first reproductive cycle and not to be confused with second-growth laterals that emerge if plants fail to undergo monocarpic senescence).

Growth of laterals from the cotyledonary node (node 0) was rare in the tall F_{2} plants of cross Wtl5240 x M3T-475 and occurred only in two of the eight rms7 plants and one of the two doublemutant plants.

The tall F_{2} population of cross K524 (rms2-1) x M3T-475 (rms7-1) gave a clear separation into 21 WT, seven rms 7 , seven $r m s 2$ and two probable $r m s 2$ rms7 plants, numbers that closely fit a 9: 3: 3: 1 ratio (Fig. 2). The two F_{2} plants with the high branching indices of 3.8 and 4.4 were backcrossed to K524 and M3T-475; the F_{1} results gave supporting evidence these two plants had a doublemutant genotype (data not shown). Interestingly, the double-mutant F_{3} plants had a branching index only 8% higher than the K524 rms2-1 controls grown with them (Fig. 2). Thus there is evidence that the rms21 rms $7-1$ double mutant has an additive phenotype. However, while the F_{2} data indicated a clear quantum increase in branching, the F_{3} data showed

Fig. 2. Distribution of the ratio of lateral to main-stem length for M3T-475 (rms7-1), K524 (rms2-1), and the $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} plants of cross $K 524 x \mathrm{M} 3 \mathrm{~T}-$ 475. F_{2} data are subdivided into four branching phenotypes representing $W T$, rms7, rms2 and rms2 rms7 plants. F_{2} and F_{3} data are from tall plants only. The plants represented in the upper seven rows were sown July 31, 2000 and in the lower two rows July 30, 2001. Data are from mature plants; photoperiod 18 h . only a small quantitative increase in branching over the rms $2 A$ single mutant.

The F_{2} of cross K 487 (rms3-1) x M3T-475 (rms7-1) gave no evidence of transgression (data not shown). An rms3-1 rms7-1 double-mutant line was obtained in F_{3} and F_{4} via a clear rms $7 \mathrm{~F}_{2}$ plant. The branching index of the double-mutant plants did not appear to be enhanced beyond the range of vigorous, single-
mutant, rms3-1 plants. However, the double mutant did combine features from both single mutants: the aerial lateral growth of rms3-1 plants and the tendency to produce laterals from the cotyledonary node shown by rms $7-1$ plants. Out of 73 tall rms3-1 rms7-1 plants, one third produced one or more laterals from node 0 , and many of these laterals continued growth into secondary stems. In contrast, basal laterals were not produced from node 0 of the K1487 rms3-1 mutant: when present, basal laterals grew from nodes 2 and/or 1 of K487 plants.

No transgression for the ratio of lateral to main-stem length occurred in the F_{2} of cross K 164 (rms4-1) x M3T-475 (rms7-1) (data not shown). Homozygous rms4-1 rms7-1 plants were obtained in the F_{3} and F_{4} via clear rms $7 \mathrm{~F}_{2}$ plants. The branching index of tall rms4-1 rms $7-1$ plants did not transgress beyond the upper range of the K164 rms4-1 single mutant. Five per cent (3/59) of double-mutant plants produced a lateral from the cotyledonary node, a feature not seen in the single mutant rms4-1.
F_{2} data for cross HL298 (rms5-3) x M3T-475 (rms7-1) indicated an additive double-mutant phenotype (Fig. 3). The tall F , population could be partitioned into 33 WT , three rms7, ten rms5, and two probable rms 5 rms 7 double-mutant plants with a substantially higher branching index than either singlemutant parent. The phenotypic contrast between the rms 5 single mutant and the double mutant is not wholly revealed by the index 'ratio of lateral to main-stem length'. Expression of rms5-3 in a tall background seems fairly weak. Three out of six HL298 plants produced no basal lateral of any consequence; likewise three out of ten tall rms $5 \mathrm{~F}_{2}$ plants. These rms5 plants were not really identifiable as ramosus mutants until outgrowth of aerial laterals commenced three to four weeks after sowing. In contrast, the

Fig. 3. Distribution of the ratio of lateral to main-stem length for M3T475 (rms7-1) and HL298 (rms5-3), and tall F_{2} plants from the cross HL298 x M3T-475. The F_{2} data are subdivided into four branching phenotypes representing $W T$, rms7, rms5, and double mutant rms5 rms7 plants. Data are from mature plants; photoperiod 18 h. presumed double-mutant plant with index 3.5 (Fig. 3) had four basal laterals exceeding 10 mm by day 11 (two from node 0 , one from node 1 and one from node 2) and all four shoots continued growth to become secondary stems. These observations provide further support for the view that rms5-3 rms7-1 plants have an additive phenotype that combines the aerial branching of $r m s 5-3$ plants with the enhanced basal branching of rms7-1 plants.

Segregation for branching phenotype in the F_{2} of cross HL298 x M3T-475 (Fig. 3) is in accordance with a 9: 3: 3: 1 ratio ($\mathrm{P}>0.1$). However, numbers in the rms 7 class are below expectation and it seems highly likely that some tall rms7 plants in this F_{2} failed to produce a basal lateral and were indistinguishable from WT plants. In a tall background, results from several crosses showed that rms $7-1$ behaved as a weak mutant lacking the full penetrance of classic Mendelian mutants. In the F_{3} of cross Wtl5240 (rmsl-5) x M3T-475 (rms7-1), only 38% ($8 / 21$) of tall rms 7 plants had a phenotype distinguishable from WT. In the F_{3} of crosses K164 (rms4-I) x M3T-475 and K487 (rms3-1) x M3T-475, penetrance of rms7-1 fell to 15% (3/20) and $6 \%(2 / 36)$, respectively. With a penetrance that low, the rms $7-1$ mutation may well have escaped detection had it been induced in a tall cultivar. We were also fortunate to have obtained rms 7 numbers right on Mendelian expectation in two F_{2} populations (Figs 1 and 2). Clearly, penetrance of rms7-1 varied from planting to planting.

In summary, a clearly additive double-mutant phenotype was observed for rms 1-5 rms7-1 (Fig. 1) and rms5-3 rms7-1 (Fig. 3), rms2-1 rms7-1 showed variable levels of transgression (Fig. 2), and rms3-1 rms7-1 and rms4-1 rms7-1 did not transgress, respectively, beyond the upper range of the rms3-1 and rms4-1 single-mutant parents. Interestingly, rmsl and rms5 both produced an additive phenotype with rms7 (Figs 1 and 3), which fits well with evidence that RMS1 and RMS5 regulate the same novel branching signal (5). However, rmsl-5 and rms5-3 had a lower branching index than rms2-1, rms3-1 and rms4-1 when all five mutants were planted and grown together (data not shown). Thus rms $1-5$ and $r m s 5-3$ have more room to show enhanced branching and an additive phenotype in combination with $r m s 7-1$.

The basal branching mutants $r m s 6-1$ and $r m s 7-1$ produced an additive double-mutant phenotype, suggesting that RMS6 and RMS7 may operate in different pathways (6). That view is supported by the fact that rms3-1 rms6-2 was found to have an additive phenotype with strongly enhanced branching (10), whereas no evidence of transgression was found here for the rms3-1 rms7-1 double mutant.

Acknowledgements: This work was funded by a grant from the Australian Research Council. I thank Dr Suzanne Morris for help with Figs. 1-3, and Ian Cummings and Tracey Winterbottom for technical assistance.

1. Apisitwanich, S., Swiecicki, W.K. and Wolko, B. 1992. Pisum Genetics 24: 14-15.
2. Arumingtyas, E.L., Floyd, R.S., Gregory, M.J. and Murfet, I.C. 1992. Pisum Genetics 24: 17-31.
3. Blixt, S. 1976. Agri Hort. Genet. 34: 83-87.
4. Floyd, R.S. and Murfet, I.C. 1986. Pisum Newslett. 18: 12-15.
5. Morris, S.E., Turnbull, C.G.N., Murfet, I.C. and Beveridge, C.A. 2001. Plant Physiol. 126: 1205-1213.
6. Morris, S.E., Beveridge, C.A., Murfet, I.C, Prioul, S. and Rameau, C. 2003. Pisum Genetics 35: 10-14.
7. Murfet, I.C. and Reid, J.B. 1993. In: Casey, R and Davies, D.R. (eds.) Peas: Genetics, Molecular Biology and Biotechnology. CAB International, Wallingford, UK, pp 165-216.
8. Murfet, I.C. and Symons, G.M. 2000. Pisum Genetics 32: 33-38.
9. Murfet, I.C. and Symons, G.M. 2000. Pisum Genetics 32: 59-60.
10. Rameau, C, Murfet, I.C, Laucou, V., Floyd, R.S., Morris, S.E. and Beveridge, C.A. 2002. Physiol. Plant. 115:458-467.
