Additional information on the linkage of genes apu and uni of Pisum sativum L.

Sarala, K. and Sharma, B.

Indian Agricultural Research Institute New Delhi-110012, India

There are only a few reports about the location of the *apu* (*apulvinic*) and *uni* (*unifoliata*) genes. Marx (1) reported linkage of *apu* and *tac* (tendrilled acacia) with gene *st* of linkage group III and a gene order of *tac-apu-st* while Marx *et al* (3) proved that *apu* and *uni* lie on the *M* side of *st*. Subsequently, Marx (2) showed *tac* was allelic with *uni* and Swiecicki (4) showed the *apulvinic* and *petiolulatus* mutants were allelic (4) ^f. The purpose of our study was to obtain additional information on the linkage of *apu* and *uni*.

In 1989-92, linkage of genes *apu* and *uni^{tac}* with gene *st* was studied in four crosses. Results were analysed using the joint segregation Chi-square to detect linkage and the product ratio method to calculate the recombination fraction.

The joint segregation analysis (Table 1) indicated that gene *apu* is located between *st* and *uni* in linkage group III with the map distances as follows:

$$uni - 20 - apu - 15 - st$$

These results are in agreement with those of Marx (1), who used the *apulvinic* line, and with the arrangement shown in the recent map of *Pisum* (5). Our calculated distance between *apu* and *st* is slightly larger than that shown on the latter map (15 versus 9 cM) but this difference is not statistically significant.

Table 1. F₂ joint segregation data and recombination fractions for genes st, apu and uni^{tac}.

Logi	Phase	Cross	Phenotype				Total	Laint M2	Recomb	SE
Loci			XY	Xy	xY	хy	Total	Joint χ^2	fract	SE_
Apu St	Repul	P 1297-2 x P 1426-2	64	27	28	1	120	8.45**	19.6	8.7
		P 1297-9 x P 1426-2	11	9	9	0	29	5.87*	<24.2	-
		P 1297-11 x P 1426-2	17	7	11	0	35	4.01*	<29.7	-
		Pooled data	92	43	48	1	184	17.56***	14.5	7.2
		Heterogeneity χ^2						0.77		
Uni St	Repul	P 1297-2 x P 1426-2	66	27	25	2	120	5.34*	28.2	8.3
		P 1426-2 x P 1297-1-21	519	188	194	16	917	33.69***	30.0	3.0
		Pooled data	585	215	219	18	1037	39.01***	29.8	2.8
		Heterogeneity χ^2						0.02		
Uni Apı	<i>i</i> Coupl	P 1297-2 x P 1426-2	82	11	10	17	120	30.59***	20.2	4.2

^{*,**,***}P<0.05, 0.01 and 0.0001, respectively

^{1.} Marx, G.A. 1984. Pisum Newsl. 16:46-48.

^{2.} Marx, G.A. 1986. Pisum Newsl. 18:49-52.

^{3.} Marx, G.A., Weeden, N.F. and Provvidenti, R. 1985. Pisum Newsl. 17:57-60.

^{4.} Swiecicki, W.K. 1990. Pisum Newsl. 22:66.

^{5.} Weeden, N.F., Swiecicki, W.K., Ambrose, M. and Timmerman, G.M. 1993. Pisum Genetics 25:4 and cover.

^f Some confusion exists over the use of symbols *uni/tac* and *apu/pet*. The valid gene symbols are *uni* and *apu*. See Ambrose (Pisum Genetics 26:44,1994). Editor