83

Internode length in *Pisum*. Interaction of genes lh^{i} , la and cry^{s} .

Swain, S.M.Department of Plant Science, University of Tasmaniaand Reid, J.B.Hobart, Tasmania 7001, Australia

In peas, a range of internode length mutations that affect either gibberellin (GA) synthesis or the response to GA have been identified. GA synthesis mutants have been identified at the *Le*, *Na*, *Ls* and *Lh* loci, and are characterised by a dwarf stature (reduced internode lengths) resulting from a reduction in the level of the biologically active GA₁ in the shoot compared with wild-type plants (5, 9, 10). At the *Lh* locus, two mutant alleles have now been identified: *lh* (7) and *lhⁱ* (11). The *lhⁱ* allele also reduces GA levels in the developing seeds, compared with its wild-type progenitor, Torsdag (*Lh*) (S.Swain, J.B. Reid and J.J. Ross, unpublished data). The reduced levels of GA₁ and GA₃ in young ovules is believed to account for the increased seed abortion and reduced seed yield of homozygous *lhⁱlhⁱ* plants (11).

Pea genotypes with altered response to GA include the *la crys* gene combination. Plants homozygous for both the *la* and *crys* alleles exhibit the slender phenotype (long, thin internodes, 1, 2, 8) regardless of endogenous GA levels (3, 6). Hence, the *La* and *Cry* gene-products are thought to act at or after GA perception in the transduction chain linking GA₁ levels to changes in internode length (6).

A GA response mutant that is epistatic to the lh^i allele in developing seeds would lend support to the hypothesis that GA's play an important role in seed development Therefore, in an attempt to provide further evidence for a physiological role of the GAs in shoots and developing seeds, the interaction between the *la crys* gene combination and the *lh*^{*i*} allele was investigated.

Materials and Methods

The pure lines of *Pisum sativum* L. used during this work are held in the collection at Hobart, Australia. The dwarf line NGB5843 (lh^i La Cry) was derived from the wild-type tall cv. Torsdag (*Lh La Cry*) by Dr K. K. Sidorova (Novosibirsk, Russia). The slender line 197 (*Lh la cry^s*) was derived from a cross between Hobart line 133 and NGB1766. Lines NGB5843 and 197 are both homozygous dominant at the internode length loci *Le, Ls, Na, Lka, Lkb, Lkc, Lkd, Lv, Lk, Lm* and *Sln*. Further details about the phenotypes and genotypes of these lines can be found in papers 7 and 11.

Plants were grown in a 1:1 (v:v) mixture of vermiculite and 10 mm dolerite chips topped with 2-3 cm of potting mix in 14 cm slim-line pots (2 per pot) or plastic tote boxes (41 x 32 cm). All plants were grown in an 18 h photoperiod and provided with nutrient solution (Aquasol) once a week. Counting of nodes started from the first scale leaf as node 1.

All F₁, F₂, F₃, F₄ and F₅ plants resulting from the cross between lines 197 (*Lh la cry^s*) and NGB5843 (*lhⁱ La Cry*) were initially grown in a heated glasshouse (9). Some of the F₃ plants were transferred 3 weeks after planting to a controlled environment cabinet with a day/night temperature regime of 25/20°C where light was provided by a mixed fluorescent (Thorn 40W cool white tubes) and incandescent (Mazda 100W pearl globes) source (200 μ mol m⁻² s⁻¹ at pot top).

Results and Discussion

The F₁ of the cross between lines NGB5843 (dwarf; $lh^i La Cry$) and 197 (slender; Lhla cry^s) had a tall phenotype and the F₂ (Fig. 1) segregated into three classes: tall, dwarf and slender. Seeds from some of the tall F2 plants (solid circles, Fig. 1) and some of the slender F2 plants (solid squares, Fig. 1) were grown-on to confirm their genotypes. One phenotypically slender F₂ plant was found to be genetically tall since its progeny segregated to give 5 tall and 1 slender F₃ plant (data not shown). Three phenotypically slender F₂ plants bred true in F₃. The remaining four slender F₂ plants could not be progeny tested because they produced only parthenocarpic pods and no seeds. This is a pleiotropic effect of the slender gene combination (6) and is consistent with these plants having genotype la cry^s. All seeds from the four dwarf F₂ plants were grown on in the F₃. One dwarf F₂ plant produced in F₃ 13 dwarf and 1 slender offspring. Hence, the genotype of this slender F₃ plant was *lhⁱ la crys*, demonstrating that the slender phenotype is expressed on a lh^i background. This result is similar to that obtained for the na la cry^{s} and le la cry^{s} genotypes (3, 4, 6) and demonstrates that the la cry^{s} gene combination is epistatic to the *na*, *le* and lh^i genes in young shoots, and is expressed regardless of GA levels in this tissue. Plants of genotype lhⁱ la cry^s also developed parthenocarpic pods in subsequent generations.

Having established that plants homozygous for lh^i , la and cry^s have a slender phenotype, the expected F₂ ratio is 45 tall: 15 dwarf: 4 slender. The observed F₂ numbers of 74 tall, 4 dwarf and 7 slender plants (Fig. 1) are not in agreement with the expected ratio ($\chi^2 =$ 16.64, P<0.001). However, the number of slender plants agreed with expected results when compared with the total number of F₂ plants (χ^2 for 1:15 = 0.57, P>0.3). In contrast, there was a significant deficiency in the observed number of dwarf compared with tall F₂ plants (χ^2 for 1:3 = 16.42, P<0.001) as observed in other crosses segregating for the *Lh* and *lhⁱ* alleles (11).

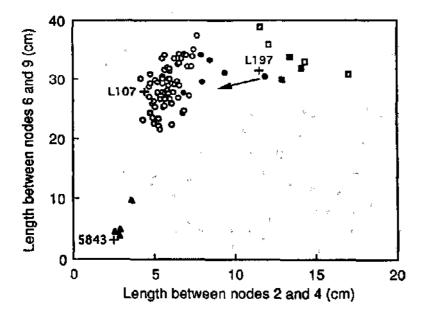


Fig. 1. Internode lengths for the F₂ resulting from a cross between line 197 (*Lh la cry^s*) and NGB5843 (*lhⁱ La Cry*), showing segregation into slender (\Box , \blacksquare), tall (\circ , \bullet) and dwarf (\blacktriangle) phenotypic classes. Solid symbols represent plants bred-on to confirm their genotype. Means for parental lines 197 and NGB5843, and for the wild-type cv. Torsdag (*Lh La Cry*), are indicated by crosses (n \geq 5). Photoperiod 18 h.

Eleven of the dwarf F_3 plants, from the family containing 1 slender plant, were allowed to self-pollinate in an 18 h photoperiod with a day/night temperature regime of 25/20°C. No significant deviation from expected results was observed in any of the resulting progeny. Four F₄ families segregated in accordance with a ratio of 3 dwarf to 1 slender plant (totals: 83 dwarf, 26 slender, χ^2 for 3:1 = 0.08, P>0.7). Three F₄ families segregated in accordance with a ratio of 15 dwarf to 1 slender plant (totals: 73 dwarf, 4 slender, χ^2 for 15:1 = 0.15, P>0.7). One F₄ family segregated in accordance with both a 3:1 and a 15:1 ratio (16 dwarf, 2 slender). Three F₄ families bred true.

Seeds possessing genotype $lh^i lh^i$ have previously been shown to weigh less than *Lh*-seeds (11). Since the *la crys* gene combination is epistatic over the lh^i allele in shoots, the possible epistasis over final seed weight of lh^i seeds was examined. Six dwarf plants from F₄ families containing approximately 1/4 slender segregates were allowed to self-pollinate in a glasshouse during winter (day and night temperatures of between 20-25 and 10-15°C, respectively). The resulting seeds were weighed immediately prior to sowing to determine if the slender F₅ plants (segregating in four families) developed from heavier seeds than the dwarf F₅ plants. However, no significant difference (t=0.41, P>0.5) was found between the weight of seeds which gave rise to slender plants (0.298±0.010 g/seed, n=13) and those which gave rise to dwarf plants (0.293±0.007 g/seed, n=48). Hence, no evidence was found for epistasis of the *la crys* gene combination over the *lh*^{*i*} allele in developing seeds.

In conclusion, the *la crys* gene combination is epistatic over the *lhⁱ* allele in young shoots. The results support the hypothesis that the slender phenotype (long, thin basal internodes) is independent of endogenous GA levels since the *lhⁱ* allele is thought to block GA production before GA₁₂-aldehyde, the precursor to all GAs in peas (11).

<u>Acknowledgements.</u> We thank Katherine McPherson for technical assistance and the Australian Research Council for financial support.

- 1. deHaan, H. 1927. Genetica 9: 481-497.
- 2. deHaan, H. 1930. Genetica 12: 321-439.
- 3. Ingram, T.J. and J.B. Reid. 1987. J. Plant Growth Regul. 5: 235-243.
- 4. Lamm, R. 1937. Hereditas 23: 38-48.
- 5. Potts, W.C. and J.B. Reid. 1983. Physiol. Plant. 57: 448-454.
- 6. Potts, W.C, J.B. Reid and I.C. Murfet. 1985. Physiol. Plant. 63: 357-364.
- 7. Reid, J.B. 1986. Ann. Bot. 57: 577-592.
- 8. Reid, J.B., I.C. Murfet and W.C. Potts. 1983. J. Exp. Bot. 34: 349-364.
- 9. Reid, J.B. and W.C. Potts. 1986. Physiol. Plant. 66: 417-426.
- 10. Ross, J.J., J.B. Reid, P. Gaskin and J. MacMillan. 1989. Physiol. Plant. 76: 173-176.
- 11. Swain, S.M. and J.B. Reid. 1992. Physiol. Plant. (in press).